11 research outputs found

    Integration of Heterogeneous Modeling Languages via Extensible and Composable Language Components

    Get PDF
    Effective model-driven engineering of complex systems requires to appropriately describe different specific system aspects. To this end, efficient integration of different heterogeneous modeling languages is essential. Modeling language integaration is onerous and requires in-depth conceptual and technical knowledge and ef- fort. Traditional modeling lanugage integration approches require language engineers to compose monolithic language aggregates for a specific task or project. Adapting these aggregates cannot be to different contexts requires vast effort and makes these hardly reusable. This contribution presents a method for the engineering of grammar-based language components that can be independently developed, are syntactically composable, and ultimately reusable. To this end, it introduces the concepts of language aggregation, language embed- ding, and language inheritance, as well as their realization in the language workbench MontiCore. The result is a generalizable, systematic, and efficient syntax-oriented composition of languages that allows the agile employment of modeling languages efficiently tailored for individual software projects.Comment: 12 pages, 11 figures. Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development. Angers, Loire Valley, France, pp. 19-31, 201

    First-Class Variability Modeling in Matlab/Simulink

    No full text
    Modern cars exist in an vast number of variants. Thus, variability has to be dealt with in all phases of the development process, in particular during model-based development of software-intensive functionality using Matlab/Simulink. Currently, variability is often encoded within a functional model leading to so called 150%-models which easily become very complex and do not scale for larger product lines. To counter these problems, we propose a modular variability modeling approach for Matlab/Simulink based on the concept of delta modeling [8, 9, 24]. A functional variant is described by a delta encapsulating a set of modifications. A sequence of deltas can be applied to a core product to derive the desired variant. We present a prototypical implementation, which is integrated into Matlab/Simulink and offers graphical editing of delta models

    A Comparison of Mechanisms for Integrating Handwritten and Generated Code for Object-Oriented Programming Languages

    Get PDF
    Abstract: Code generation from models is a core activity in model-driven development (MDD). For complex systems it is usually impossible to generate the entire software system from models alone. Thus, MDD requires mechanisms for integrating generated and handwritten code. Applying such mechanisms without considering their effects can cause issues in projects with many model and code artifacts, where a sound integration for generated and handwritten code is necessary. We provide an overview of mechanisms for integrating generated and handwritten code for object-oriented languages. In addition to that, we define and apply criteria to compare these mechanisms. The results are intended to help MDD tool developers in choosing an appropriate integration mechanism.
    corecore